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INTRODUCTION 

In a number of papers (for example, [i, 2]) vibration of plates (slabs) of piezoelectric 
materials is investigated on the basis of approximate two-dimensional equations. The area of 
application of these is virtually not studied at all. However, from the character of their 
structure it emerges that they are poorly adapted for the investigation of high-frequency vi- 
bration of thin and thick plates; it is not capable of describing an edge resonance; and so 
forth. Comparisons with experiments [3] sometimes give considerable discrepancies even for 
fairly low frequencies. The investigation of the area of application of such two-dimension- 
al theories (for example, with respect to the parameter of relative thickness c = h/a and 
the frequency ~) requires analysis of the problem on the basis of three-dimensional equations 
of electroelasticity. In the classical theory of elasticity an analogous problem was ana- 
lyzed on the basis of combined application of the theory of homogeneous solutions and the asymp- 
totic method [4]. 

As we know, in dynamic problems the construction of homogeneous solutions for plates 
(slabs) is connected with the determination of the roots of the dispersion equation. The dis- 
persion equation in the case of considering a plane problem of electroelastic vibration under 
the condition that the vector of external forces is zero on the faces of the plate, and that 
the normal constituents of electrical induction and the tangential constituents of the elec- 
trical field on the boundary between the piezoelectric material and vacuum are equal, was 
obtained in [5]. By means of an approximate solution of this equation, the dependence of the 
phase velocity on the frequency was found for the first two lowest modes of symmetric and 
antisymmetric types of vibration, respectively. For a circular piezoactive waveguide the 
real roots of the dispersion equation were investigated in [6] for normal waves of axisym- 
metric type. 

The present paper is devoted to the construction of a system of homogeneous solutions of 
antisymmetric vibrations of a piezoelectric plate with an arbitrary plan view. 

w We denote by A the region occupied by a cylinder (plate); by F, its side surface; 
by S, the middle surface; by 2h, the thickness; and by b, a characteristic linear dimension 
of the plate. We refer A to a Cartesian coordinate system (xl, x2, xa) with the origin at S 
and the xa axis parallel to the generator of the cylinder. We assume that the material of 
the plate is a preliminarily polarized ceramic of the class C6v ~ 6mm with the polarization 
axis parallel to the xa axis. The ends of the plate are completely covered by electrodes of 
infinitely small thickness which are shortened. 

Making use of the relations [2], we can write the vibration equations of the plate in 
the form 

(po ~ ~ c~A + co~O~ --  c~O~ + c .  ~) u~ + (c~ + co~) 0~0~.~ + (c~ + c~) a~O~u 3 + (e~ + e~5) 0~0~ = O; 

2 (c,, ~- c,3)(0~03u , + 0~03u2)+ (O ~ + c,,A + c330~ ) u 3 + (e,~A -~ e330, ) 9 ::: O; (1 .1)  

O .  9 q 
oz=oT,:, A :=0~+0~, 
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where U i = uieJ ~t are the components of the displacement vector; T is the potential of the 
electrical field connected with the voltage vector by the relation E = --grad �9 ; Cmn are the 
elastic constants; emn are the piezoconstants; and emn are the dielectrical permittivities. 

The following conditions are given on the ends at x~ = • 

t3~(z, +_+h) = O; ~ ( x ,  +_ h) = C; x = {xl ,  x . } ,  (1.2) 

where tni are the amplitudes of the mechanical stresses; C 5 const. 

We shall assume that C = 0, since it is not difficult to set up a particular solution of 
Eqs. (i.I) which does not depend on x and satisfies the condition C # 0. The solutions of 
Eqs. (i.I) which satisfy the homogeneous boundary conditions (1.2) are called homogeneous solu- 
tlons. 

Invariance of Eqs. (i.I) and the boundary conditions (1.2) relative to the rotation 
group about x3 allows us to simplify the original problem. Indeed, we represent the plane 
field {ul, u2} in the form 

u, = 01q) -I- O-oT; u~ =: O XD -- OlaF. 

I t  i s  obvious t h a t  such r e p r e s e n t a t i o n  i s  always p o s s i b l e .  S u b s t i t u t i o n  of  
a l lows us to s e p a r a t e  the  o r i g i n a l  problem i n t o  the  fo l lowing  two: 

L(A)V -=0, {JI(h)V}x,=ih= O; 

H ( A ) ~ - - ( c 4 , a ]  + c68A -'r- po)o) ' -F = O; {O~'t"},~.= .:,, = O, 

( l .3) 

(1.3) into (1.1) 

(1.4) 

(1.5) 

where V = {@, ua, ~} is a vector function; L, M are matrix operators of the form 

, 02 . po)" + cnh + c4~ 3 (c4~-~-c~3)aa (els§ 
, 2 ~ 2 

�9 , 9., 

o 

(1.6) 

We introduce the concept of elementary solutions of the first and second kinds. For this we 
shall seek the solutions of the problems (1.4), (1.5) in the form 

V = v ( x 3 ) m ( x ) ;  (A -~ a~ = O; v = {ul ,  v o, u3}; 

rF = a~(x3)n(x); (h -]- k-o)n = O. 

(i. 7) 

We introduce the dimensionless coordinates and quantities according to the expression 

= x31h; ~l = x~/b; ~ = xllb; e = h/b; 

.Q~ = pco2h2/c4a; a = ah; % = kh. 

S u b s t i t u t i n g  ( 1 . 7 ) i n t o  ( 1 . 4 ) ,  (1.5)  and t ak ing  i n t o  account  
v a r i a b l e s  we o b t a i n  the  s p e c t r a l  problem 

L ( - -  a-o)v ---- O; {M(-- a~)v}~=• ---- O; 

It(- ~Dr = 0; {,.~h=• -- 0. 

As will be seen below, the problems (1.9), (i.i0) have a discrete spectrum. 
spectrum of the problem (1.9), while {Xj} is the spectrum of the problem (i.i0). 
points of the spectrum is matched by solutions of the form 

Vk = v~m~; (e~V 2 + ah)m k = O; V-o = 0-o/0~2 + O~-/O'q~; 

~ i  = , j n j ;  (e-oV ~ + ~ ) n ~  = O. 

(1.8) 

(1.8), after separation of the 

(1.9) 

(i.10) 

Let {a k} be the 
Each of the 

(1.11) 

(i. 12) 
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The solution (i.ii) is called an elementary solution of the first kind, while (1.12) is an 
elementary solution of the second kind. In total they determine the complete system of homo- 
geneous solutions which allows us to satisfy arbitrary boundary conditions on the side sur" 
face. 

w We consider the spectral problems (1.9), (i.i0). The problem (i.i0) is solved sim- 
ply and is described by the system of relations 

1 o ~2~ = h - / - c o s  ~'iXa; sin ?~h = 0; ] = 0, 2, 4 . . . . .  

~p~ = h-U%in ?~,ra; cos ?~h = 0, j = 1, 3, 5 . . . .  ; 
�9 ) _ _ [  o 

( 2 . 1 )  

The system of eigenfunctions (2.1) is a complete orthonormalized system. 

Much more difficult is the problem (1.9), whose symbolic form contains a system of three 
ordinary differential equations of the second order with constant coefficients and homogene- 
ous boundary conditions. The general solution of the system of equations has the form 

3 

2 

U 2 - - -  

i = l  

:I 

t' a -- ~ [Ai ch([3~;) + Be sh ( ~ ) 1 .  
i 1 

(2.2) 

where A i and B i are arbitrary constants; Bi are the 

~'~-i.-~1; ~ + 0/~ ~ -i- J~ - :  0; 
1' -- Xt.O. ~ -- A'~cd; O - D1Q ~ -- D~(..)2cz ~ -)- Daa~; 

B -= - -  &-(C~9.' - -  C~:(z"- ~- C3a"); 

A:L .... c4, [(c~3 @ c.,,)e33 @ e,~3]/G; D t =: c#,ea3/G; 

N2 == [c3a (cnem~-F clash) @ c3.~ (eat @ els)"' @ cne~3 - -  2c~ (eate3a + c13%3)-- 

T ' )  t 

D2 = c4~ [(q4 + cn) %a + (c4~ -F G3) en  -F (eat -F el~) 2 + 2%e3s]/G; 

D8 - -  [ q ,  ( cn%3 + e:~) -!- cn (ca3en -F  2 e , 5 % a )  - -  c~3s~ t  - -  2c~3 X 
o ] o , 

: ' :  (C44~11 -~ ealet5 -i- era)j/G; Ct == c~sn,  O, 

(q~ -i- q~) e~ q- (e:~ -i- e~) 
h i : :  - -  

roots of the characteristic equation 

(2.3) 

It should be noted that the problem (i.i0) is purely elastic and its solution (2.1) does not 
contain the characteristics of the electrical field, while the problem (1.9) is coupled and 
in the expressions (2.2), (2.3) there are all constants of the material. The coupling of the 
problem in fact determines its complexity. 

The general solution (2.2) decomposes into a symmetric solution A i = 0 and an anti- 
symmetric solution B i = 0. We consider the antisymmetric solution corresponding to flexural 
vibration of the plate. 

Satisfying the homogeneous boundary conditions, we obtain the dispersion equation 

a l s h ~ l  a. 2 s h ~  a~sh~3 I 

/ ( a , Q ) ~  b t c h ~ ,  b.~ch~2 b ~ c h f i ~ / = 0 ,  . ( 2 . 4 )  
ch ~ ch ~.~ c.h~[ 
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w h e r e  

o I I at = ( - -  ergot-hi ~i- c~:~ei ; -  e33)131; 

bi = ot [c44(hi~ ~ + ei)  -}-, el~ ]. 
(2.5) 

The roots of this equation in fact determine the system of elementary solutions of the first 
kind. The actual solution of the problem (1.9) corresponding to a spectrum point a k has the 
form 

The  dispersion equation (2.4) 

3 
t.j(h) "~'~ ,,(107 (ldn(h) (a(.h r5 

i=:1 
3 

v!/~) x~ A(J~ (~') ch  (a  (~)'~x 
i : : i  

3 

i = 1  

can be rewritten in the more usual form 

(2 .6)  

3 

"~ M,~ th  13,, : - =  O. ( 2 . 7 )  z.J  
~1=: 1 

w We first divide the roots of Eq. (2.4) into two groups: real and complex. The 
homogeneous solutions corresponding to the complex roots for small E have the character of a 
boundary layer, while the homogeneous solutions corresponding to the real roots describe the 
interior mechanical and electrical fields. We investigate the behavior of the roots of 
Eq. (2.4) for small values of the parameter a, having used for this the perturbation method 
[7]. We write Eq. (1.9) in the form 

L ( - - ~ ) v  ~ [Lo ( - -~  2) -i- Q~L~Iv = O. (3 .1)  

The form of the operators Lo and LI is established from comparison of the expressions 
(3.1), (1.9), and (1.6). From (3.1) it follows that the operator L(--a 2 ) can be considered 
as a perturbation of the infinite operator Lo(--~ 2) by the finite operator a2L1. The spec- 
trum of Lo(--~ 2) is given by Eq. (2.4), if we put a = 0 in it. For ~ = 0 Eq. (2.4) has only 
one quadruple real root ~ = 0 and a countable set of complex roots. For a number of mate- 
rials of the systems RZT and TsTS, an asymptotic analysis shows that for a = 0 in the upper half- 
plane there exist three branches of complex roots. 

The first branch coincides with the imaginary axis; at the same time the asymptotic val- 

ues of the roots are as follows: 

-~- ~- k~ (3.2) 
X 0 = f)~ ' 

where 0a 2 = (BI/~) 2 < 0 is the real root of Eq. (2.3) for a = 0. For materials of the sys- 
tem TsTS the points of intersection of the imaginary branches with the plane ~ = 0 can also 

be determined from the expression 

k (15~a3)1/~" 2""' 
/ 

" ~  s  - -  
C44 

the error here not exceeding 2%. 

Two other branches are symmetrical relative to the imaginary axis. The position of the 
right branch and the location of the roots ~n ~ = Zn ~ + jyn ~ on it are described by the asymp- 

totic relations 

b2z,~ + a~g~ = Pn; a~z~--  b~g~ = rn, ( 3 . 3 )  
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where 

p,~ = (2n i- I/2)n/2: r,. = (L2) arcsh (Ira M j 2 R e  Ma -- Re MJ2 hn ilia). 

Here 02 = ~2/a  = a2 + jb2 is the root of the bicubic equation lying in the first quadrant. 

The expressions (3.2), (3.3) already for k = n = i give the values of the roots not ex- 
ceeding 1%. We can determine the character of behavior of the complex and imaginary roots 
for small ~. Assuming that the quantity ~ = ~/]al is sufficiently small, we expand by powers 
of this quantity the roots of the bicubic equation (2.3): 

~ =  0 ~ - -  F~o 2, (3.4) 

where 

F + = / + + M ~ =  ~ _ , > . ~  .,.~_ �9 
+ 3 0 i  +.A +0 i -~  D 3 

Substituting 8, from (3.4) into (3.2), after certain transformations we obtain the asymptotic 
approximations of the imaginary roots for low frequencies; 

• (fi) = • + /'~' 
=o,(~ +,@ " (3 .5 )  

Analogously substituting B2 into (3.3), we obtain a system of two equations in Zn, Yn, which 
can be written in the form 

o o o 1 

S u b s t i t u t i n g  t h e  a c t u a l  v a l u e s  o f  t h e  modu l i  o f  the  c e r a m i c s ,  from t h e  e x p r e s s i o n s  ( 3 . 4 ) -  
( 3 .6 )  we can d e t e r m i n e  t he  c h a r a c t e r  o f  dependence  o f  t h e  i m a g i n a r y  and complex r o o t s  o f  the  
d i s p e r s i o n  e q u a t i o n  f o r  low f r e q u e n c i e s .  For  t he  c e r a m i c s  TsTS-19 t h e y  have  t he  f o l l o w i n g  
form: 

zl = 1.48(1--0.007(.).'-); //1 = 3.47([--0.02Q~); • = 1.68(1@ O,Oi3Q~); 

z+ = 2.11(1--0.004_Q~); g~ = 6.37(1--0.07Q2); • = 5 .04( t+  0,002fl2). 

From the expressions we see that the quantities ~k(~), Zk(~), yk(~) only slightly depend on 
the frequency. Therefore, for small frequencies they can be approximated by the roots from 
Eqs. (3.2), (3.3). 

We consider the construction of asymptotic approximations of the roots in the neighbor- 
hood of the point a = O, fl = 0. 

8 71 



Since for the degenerate operator a = 0 is a quadruple point of the spectrum, for the 
investigation of the spectrum of the operator L(--a =) we use the branching methods [7]. The 
solution of the spectral problem (3.1) in this case is sought in the form 

: . .  == ,. , Q~vC2) , a ~ t~Q + t ~  ~ -[- ., v v +'+> + ~ v  (t) = ~ . . . .  ( 3 . 7 )  

The substitution of (3.7) into (3.1) leads to a certain recursive system; integrating 
this system, we obtain 

v~ ~ = - " ' o~ ;  v'., ~  = u,o; v~ ~ = - o :  

v.(zt) t lwoA.  ' ~ - -  1 ~ w~; u(t) / tu,oA 1 ~ - -  l 
�9 - -  + 2 n- . : J  : =  ~ , 

l[ ::: +) ++ c44 ' C ' 3 A ' , - L e ' + ' - ! - e " ~ A l n - c 4 + j  o ' - -  ,J-Wi+; V~ l) : - -  t I + e4+ 

t ~ = B l ;  B ~ =  3~,, 
eatA~ -i" Cl3Jt2 -i- i ' l l  

u,? = c o n s t ;  

(3.8) 

(3.9) 

Here Wo is an arbitrary constant which can be taken, for example, equal to unity. 

Equation (3.9) has four roots: 

t n = B ,  6+_ = - -B+ tl.~ = ]B;  t l~ . . . .  ] B .  (3.10) 

From the expression (3.10) we see that in the neighborhood of the point (0.0) there exist two 
real roots and two imaginary roots. The expression 

= tn[2V~(l  i- 0. (~.)')) (3.11) 

describes the beginning of the first dispersion curve depicted in Fig. i. The expression 
(3.11) guarantees 1% accuracy for ~ ~o = 0.25. For ~ > flo the first curve degenerates into 
a straight line with an angle of inclination (for TsTS-19) V R = fl/a = 1.06. The value of V R cor- 
responds to the phase velocity of Rayleigh waves for the given material. 

We now consider the problem of constructing the dispersion curves for an arbitrary value 

of ~. 

We construct their asymptotics in the neighborhood of e = O. In Eqs. (2.3) and (2.4) we put a = 0 
and determine the values of ~ which are the beginning of the dispersion curves. We obtain 
two sets of values: 

Q.~ = ran~2,  m --- l ,  3, 5 . . . .  , 
/ 

ko = . I / /  e++~,i n = O, 1 , 2 ,  
C33F33 -~" e~3 

( 3 . 1 2 )  

The values ~n and ~m found are resonances for the infinite layer. 

To obtain the approximate roots for lal + 0 or ~ + m~/2, we put 

~ m  /ll2~ 2 o 

T R m a ~ "  (3.13) 

Taking into account the fact that a is small, from the combined analysis of Eqs. (2.3), (2.4) 

we obtain 

/ .) .) i 
B m =  - -  ( 8 ~ . , m - n ' t g  ~ ) D  -~- Ao ,  (3.14) 

where 

_ 

D =  

Cl 3 

Ao = (N2 - -  D2. + C 0 / ( 2 N ~  - -  D~ - -  3); ~3 = (m.~/2)ko; 

(c+4 ~ Cla) e:~ -4- (eat  -~- e l s )  , caae'-' _~_ esa k 2 e3 

,, \ (c+a -~  c,3) e_L, ~-_ (e3.__l -~  e t s )  9 
c3aea -~- e33 ) ctl -'7 c4~Ao kg 
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Thus, for R m > 0 imaginary roots occur for ~m > m~/2 and real roots occur for a m < m~/2, 
while for R m < 0 the converse takes place. Giving actual values to the moduli of the ceram- 
ics, we can calculate from (3.14) the quantities R m. Thus, for the ceramics TsTS-19 R~ = 
3.606, R3 = -0.783. Analogously, we can construct the asymptotics of the roots for ~n § 
n~/ko. Going over to the isotropic case, we obtain from the expressions (3.13), (3.14) the 
well-known results [8]. Although these expressions have a small area of applicability, which 
decreases with the growth of m, they are of interest, since they are connected with the de- 
termination of portions of negative group velocities. 

In Fig. I we have depicted the dispersion curves for the ceramics TsTS-19 obtained by 
numerically solving Eqs. (2.3), (2.4). The real and purely imaginary values are marked by 
the solid lines, with the purely imaginary roots located on the left of the origin of the co- 
ordinates. 

The real and imaginary parts of the complex roots are marked by the dashed lines; here 
the Ox axis is the axis of real values of ~, while the Oy axis is the axis of imaginary val- 
ues of ~. Along the Oz axis we have set off the values of the dimensionless frequency ~. 
Dashed-dot lines are used to denote curves corresponding to the asymptotic approximations of 
the roots. It is seen that for low frequencies the imaginary and complex roots of the dis- 
persion equation (2.4) vary little in comparison with their asymptotic values~k(~), Zk(~) , 
yk(~) from the expressions (3.5), (3.6); here the frequency range of applicability of these 
expressions increases with the growth of the ordinal number k. For k = I the error does not 
exceed 5% for ~i~'2, while for k = 2 it is not exceeded for ~4. 

Consideration of the piezoeffect does not lead to any qualitative changes for the real 
and complex curves in comparison with the isotropic problem. They are only displaced by a 
small amount which depends on the choice of the constants of the piezoceramics~ An analo- 
gous result for the real roots has been obtained in [6]. However, the emergence of an almost 
vertical branch corresponding to the purely imaginary roots can be explained only by the piezo- 
electric coupling. On the basis of the dispersion curves, for each ~ we can determine the 
phase and group velocities of propagation of a disturbance in a plane waveguide. 

The latter, as we know, characterizes energy transfer. Here it is of interest to inves- 
tigate the distribution of the energy being transferred in the ease of a fixed frequency over 
individual modes corresponding to the dispersion curves. However, such a problem can be dealt 
with, having solved the particular boundary-value problem, i.e., having determined the func- 
tions mk(~, n), nk(~, ~) (the moduli of the piezoceramics TsTS-19 are taken from [9]). 
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